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--I. Phys.: Condens. Matter 6 (1994) 10617-10623. Printed in the UK 

Heisenberg Hamiltonian with a Dzyaloshinski-Moriya 
interaction 
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Department of Physics, Bose Institute, 93/1 APC Rood. Calcutta-700009. India 

Received 6 June 1994. in final form 18 July 1994 

Abstract. The spin-; ferromagnetic Heisenberg Hamiltonian with a Dzyaloshinski-Moriya 
interaction and in the presence of a strong magnetic field is studied in one dimension. Using the 
ewct Bethe ansae andysis, the excitation SpedNm of one- and two-magnon states LS derived. 
It is further shown that in certain parameter regimes the two-magnon bound state exists in the 
full range of allowed values of the centre-of-mass momentum wavevector k. 

1. Introduction 

The Heisenberg Hamiltonian in one dimension has been widely studied over the years. 
The ground-state energy and low-lying excitation spectrum are known exactly for both the 
ferromagnetic (FM) and the antiferromagnetic (AFM) Hamiltonians. The exact results are 
obtained using the well known Bethe ansatz (BA) [I]. Bethe first proposed the nnsatz in 
1931 and used it to find the energy dispersion relations of magnon bound states in the case 
of the spin-f FM Hamiltonian in  one dimension. Later the technique has been recognized 
to be very general and applicable not only to models in magnetism hut also to a variety 
of other models [Z]. The Heisenberg Hamiltonian has further been studied by including 
different anisotropy terms in the Hamiltonian. One such term corresponds to the well 
known Dzyaloshinski-Moriya (DM) interaction [3,4]. The effect of this term on the ground 
state and the excitation spectrum of the Heisenberg Hamiltonian has been studied in the 
past [5,6] for both the FM and the AFM Hamiltonians. The BA has been applied in some 
of the cases studied. In this paper, we consider the S = one-dimensional FM Heisenberg 
Hamiltonian with an added DM interaction and in the presence of a strong magnetic field. 
In the absence of the magnetic field, the ground state is never FM [ 11. For a sufficiently 
strong magnetic field and for 52 < J1, the FM state can become the ground state. We study 
the effect of the DM interaction on the FM spin-wave spectrum and show using the BA that 
two magnon bound states exist in suitable parameter regimes. 

2. Excitation spectrum 

The Hamiltonian that we consider is given by 
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with J I ,  Jz > 0. J2 is the strength of the DM interaction which is taken to be directed along 
the z axis, 2 is the unit vector in the z direction and h is the strength of the magnetic field 
directed along the z axis. We consider J2 to be less than J I .  The spins have magnitude 
4 and a periodic boundary condition (PBC) is assumed, i.e. N + 1 1 where N is the 
number of spins in the chain. For a sufficiently strong magnetic field and for JZ e J I ,  the 
ground state of H is FM with all spins aligned parallel to each other. This can be verified by 
exact diagonalization of H when N is small. In terms of the spin-raising and spin-lowering 
operators, the Hamiltonian H in equation (1) becomes 
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(2) 

The ground state $0 has all spins pointing upwards, i.e. 

$0 = 0r(l )a(2) .  . . a (N)  

where ~r denotes an up spin. The ground-state energy E, = -JI  N/4-hN/2. One can easily 
verify that SL, the z component of the total spin, is a constant of motion, i.e. [H, Si] = 0. 
We now consider the case in which r spins deviate from the ground-state spin arrangement, 
i.e. there are r down spins at the sites m,,  m2. . . . , m,. These spin functions are written as 
Y(m1,  m2,. . , , m,). The eigenfunction Y of H is a linear combination of the NCr functions 
Y ( m , .  mz, . . . , mr):  

Each of the numbers ml , . . . , m, runs over the possible values 1 to N subject to the condition 

m I  c m z < . . . c m ,  (4) 

to avoid double counting. We write the eigenvalue equation as 

Multiplying by a particular Y*(ml ,  m2.. . . , mrj and using orthogonality properties, one 
obtains 

x x a ( m ; , m ‘ ; ,  ... ,m:)+iJ~N’a(m~,mz ,  ..., m,)+hra(ml,mz, .. . , m r )  

(6) 
Im”1 

where E = E + J I N / 4  + h N j 2  is the excitation energy with respect to the ground-state 
energy EE and N‘ is the number of antiparallel spin pairs. The first sum on the right-hand 
side is over the distributions m i , .  . . , m: which arise from a nearest-neighbour exchange of 
antiparallel spins of the type t.l in (ml, . . . , m,) and the second sum is over the distributions 



Heisenberg Hamiltonian with DM interaction 10619 

my, ..., my which arise from interchange of spins in antiparallel pairs of the type &t in 

Consider the case of one spin deviation, i.e. I = 1. In this case, N' = 2 and equation (6) 

(7) 

( m ~ ,  ..., mr). 

becomes 

Ea@) = -I(JI +iJz)/Z]a(m + 1) - [(JI - iJz)/Z]a(m - 1) + Jla(m) + ha(m). 

The solution for a(m) is given by 

a(m) = exp(ikm) 

so that 

E = J i ( l  -cosk)+  JZs ink+h.  (8) 

NOW consider the case r =,2, i.e. there are two spin deviations. We distinguish between 

(i) The two down spins are not neighbours, i.e. 

From the PBc, k = (2n /N)A ,  A = 0, 1,. . . , N - 1. 

two cases. 

Ea(mi, mz) = - [ (A  + iJz)/2l[a(m1 + 1, mz) + a(m1, mz + 111 - [ ( J I  - iJz)/2] 

x [ a ( m ~  - 1,mz) + a ( m ~ ,  mz - 111 +2J1a(m1, mz) +2ha(ml,mz).  (9) 
(ii) The two down spins are neighbours, i.e. 

s a ( m ~ , m i + I ) = - [ ( J ~  + i Jz ) /2 ]a (ml ,ml+2) - [ ( J~  -iJz)/2] 

x d m i  - l , m i + l ) + J ~ a ( m ~ , m ~  +1)+2ha(m1 ,m1  + l ) .  (10) 

a(mi,  mz) = CI exp[ i (k~m~ + k z m d l +  CZ exp[ i (k~m~ + k~mz) l  (11) 

~ = J i [ ( 1  - c o s k l ) + ( l  -cosk2)]+Jz(sink1 +sinkz)+Zh (12) 

Equation (9) is satisfied by the BA 

with the eigenvalue 

where Ci, Cz, kl and kz are to be determined. Equation (10) can also be satisfied if Ci and 
Cz are chosen in such a manner that 

( J I / ~ ) [ u ( ~ I , ~ I ) + ~ ( ~ I  + I , m l  + l ) - k ( m ~ , m l  +l)I-(iJz/2) 

x [ a ( m ~ ,  mi) - a(mi + 1, ml + 111 = 0. (13) 
The amplitudes a (m,m)  have no physical meaning, since we are dealing with spin-f 
particles, and are actually defined by equation (13). Putting equation (11) into equation 
(13) and choosing CI = exp(i@/2) and Cz = exp(-i@/2), one derives the condition 

(14) 
-JI sin[(ki - kz)/Z] 

JI  cos[(kl - kd/21 - JI cos[(k~ + k?)/21 + Jzsin[(kl + kdP.1' 

N k l - @ = 2 x A l  Nkz+@=ZnAZ Al ,A2=0 ,1 ,2  ,..., N - 1 .  (15) 
The sum of k~ and kz is a constant of motion by translational symmetry: 

(16) 

Cot ($) =~ 

From the PBC, one obtains a(m1, mz) = a(mz, mi + N), leading to the relations 

k = ki + kz = (2nfN)O.l + Az). 

For real ki, kz and @(-n < @ < n), the eigenvalue spectrum is given by equation (12) 
and corresponds to a continuum of scattering states. 
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3. Bound states 

To obtain bound states of two spin deviations, consider kl, k2 to be complex, i.e. 

k l = u + i u  k z = u - i u .  (17) 

From equation (1.5) 

N(kl - k2) = 2Niu = 2 z ( h 1  - h2) +Z@. (18) 

Put @ = @ + ix so that 

@ = ~ ( h z  - A I )  x = NU. 

For non-zero v ,  x is large. So 

sin@ -isinhX . 
N -1. 

cosh x -- COS + cos ($) = 

From equations (14), (17) and (20), one obtains the condition 

J I  exp(-u) = 51 cosu - Jzsinu. (21) 

Thus, from equation (12), the excitation energy for two spin deviations with complex kl, 
k2 is given by 

E =  51 - J I [ ( J ICOSU - J ~ s i n u ) / J 1 ] ~ + 2 h .  (22) 

The possible values of U are given by equation (21) (1 2 exp(-u) 2 0). The centre-of-mass 
momentum wavevector k (defined modulo Zn) = 2u + 2nn where n is an integer and is 
limited to the range 0 < k < 4 tan-'( J I  / 32). 

4. Results 

From equation (12), the continuum of scattering states have bounds & I  and 82 given by 

Ei = J1[2 - 2cos(k/2)] + 2J2sin(k/2) + 2h 

€ 2  = J1[2+2cos(k/2)] -2J2sin(k/2)+2h 

Figure 1 shows the plots of &b (the two-magnon bound-state energy given by equation (22)), 
E I  and EZ versus k (0 < k < 4tan-'(J1/Jz)) for 51 = 1.0, JZ = 0.5 and h = 1.0. One finds 
that a two-magnon bound state exists in the full range of allowed k-values. There are two 
points of degeneracy at which a, = EI  or e2. From equations (22) and (23), the condition 
for the energies to be the same is 

J I  cos u - 52 sin u = J I  

sin(u/2)IJ1 sin(u/2) + Jzcos(u/~)]  = 0. 

(24) 

(25) 

which leads to the relation 
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Figure 1. Two-magnon bound-state energy Q and energies of two free magnons, with bounds 
given by E L  and a. versus k ,  the centre-of-mass momentum wavevector. for JI = 1.0, Jz = 0.5 
and h = 1.0. The values of k are in the range 0 6 k 6 4tan-](JrIJd. 

Thus the two points of degeneracy are 

U = 2n11 n=O or integer 

tan(u/2) = -J2/51. 
(26) 

In figure 1, the points correspond to k = 0 and 4tan-'(Jl/Jz), respectively, which are the 
end points of the range of k-values. 

For 52 = 0 and h = 0, equations (21)-(23) reduce to those for the isotropic FM 
Hamiltonian and the values of k are in the range 0 < k < 2x. As Jz increases from zero, 
the range of k-values decreases. The magnetic field enters only into the energy expressions 
and has no effect on the range of k-values. The same linear term 2h is contributed by the 
magnetic field to the energies of the continuum and the bound states. The magnetic field is 
needed to ensure that the FM state is the ground state. In the FM state, the magnetic field 
has the largest contribution to the energy equal to -hN/2. Since Sz. the z component of 
the total spin, is a consewdquantity, the other states are obtained by deviating spins from 
the parallel spin arrangement of the FM state. The FM state has the highest possible value 
of Sz = N/2.  The other states have lower values of SL. For states with low values of Sz, 
the contribution of the magnetic field to the energy term is much smaller than in the FM 
state. Thus for saong magnetic fields the FM state definitely has a lower energy. For one 
and two spin deviations (SL = N / 2  - 1 and N/2- 2, respectively), we have calculated the 
excitation energies measured with respect to that of the FM state. If these excitation energies 
are greater than zero for a certain choice of the parameters JI,  JZ and h, the assumption 
that the FM state is the ground state is correct 

We next consider the general case of r spin deviations. Again, two cases are to be 
considered. 

(i) No two spin deviations are neighbours. 
(ii) Two spin deviations are neighbours. 
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In case (i), the general eigenvalue equation (equation (6)) is satisfied by the full BA [l]: 

P is any permutation of r numbers 1,2, . . . , r .  P j  is the number obtained by operating P 
on j .  The @-values are the phase shifts in analogy with scattering theory. Equation (11) 
with C ,  = exp(i@/2) and C, = exp(-i@/Z) is a special case of equation (27) for r = 2. 
The eigenvalue E is given by 

E = h c(1 - coskl) + 52 c s i n  kl + rh .  
i = I  I=1 

Equations (8) and (12) are special cases of equation (28) for I = 1 and 2, respectively. The 
wavevectors ki are determined as before by applying the PBC which leads to the r equations 

The phase shifts @ij are determined, as in  the case of r = 2, by demanding that the BA 
(equation (27)) is also a solution for case (ii) (two spin deviations are neighbours). This 
leads to r(r - 1)/2 equations identical with equation (14) since there are as many distinct 
@(@lj = -@jj ) .  These equations together with the r equations, equation (29), constitute a 
total number of r(r + 1)/2 equations for as many unknowns and so are expected to have 
solutions. The excitation spectrum is given by equation (28). The full analysis of the BA 
equations for both real and complex ki is beyond the scope of this paper. 

To summarize, we have considered the S = $ quantum Heisenberg chain with a DM 
interaction and in the presence of a strong magnetic field. We have considered the case when 
the ground state has a FM alignment of spins. Such a ground state is possible because of the 
presence of the magnetic field. In [6], the magnetic field term is not considered. The ground 
state in the classical limit has a spiral structure with neighbouring spins making a fixed angle 
with one another. The spiral structure persists even for weak DM interactions and the FM state 
can never be the ground state. We have derived the ground-state energy and the excitation 
spectrum. We have also specifically shown that bound states of two spin deviations can 
occur. In [6], some ground-state properties and the excitation specmm have been derived by 
relating the quantum Hamiltonian to the anisotropic Heisenberg Hamiltonian with a certain 
type of boundary condition and using the BA. The possibility of bound-state formation has 
not been considered. Our analysis is similar to Bethe’s 111 original work which explicitly 
showed the existence of magnon bound states for the FM Heisenberg Hamiltonian. 
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